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Abstract—We propose a phased-array-fed lens (PAFL) antenna
which is capable of beamforming like a phased array but
with array elements spaced beyond 0.5λ. The PAFL produces
high quality scanned beams using only five active feeds. This
architecture represents a dramatic cost and power savings over
conventional phased arrays while providing many of the features.
We present an optimal beamforming method to achieve maximum
gain at any angle using a subset of feeds and a multi-objective
optimizer using particle swarm optimization for more granular
pattern control. The method is applied to several simulated state-
of-the-art lens antennas with good performance confirming the
generality of the method. The theory is demonstrated with a
prototype PAFL comprising a 4” aperture GRIN lens antenna,
an 8-element 0.725λ–spaced linear patch array operating at
29 GHz, and a commercial Ka-band SATCOM beamformer IC.
The prototype achieves maximum gain at all angles and improves
scan loss by 4dB at ±50◦.

Index Terms—GRIN lenses, beamforming, phased-array, elec-
tromagnetic metamaterials, lens antennas, millimeter-wave

I. INTRODUCTION

RECENT advances in millimeter wave (MMW) communi-
cations have ushered in a new era of high speed wireless

data proliferation. Emerging 5G mobile wireless networks and
low earth orbit (LEO) satellite-enabled space internet will
make extensive use of the MMW bands. High performance
beamforming antennas are essential to the realization of these
services and are anticipated to be deployed on a massive
scale: it is estimated that by 2030 over 2 million base-stations
(BS) and small cells (SC) will be deployed in 5G-MMW
infrastructure and by 2040 up to 19 million LEO SATCOM
terminals will be installed with end-users (e.g., homes).

The current preferred antenna system for these applications
is the phased array antenna (PAA) [1] as depicted in Fig. 1(a).
Modern PAAs demonstrate exceptional beamforming perfor-
mance and consistently achieve low scan loss, wide field-of-
view (FoV), multi-beam capabilities, and beam-shaping [2]–

Manuscript received November 22, 2021; revised December 10, 2022.
This work was supported in part by the National Science Foundation under
award CNS-1439682-011 (BWAC IUCRC) and the Department of the Navy,
Office of Naval Research under contract N00014-20-C-1067. Distribution A:
Approved for public release: Distribution Unlimited. Corresponding author:
Jonathan D. Chisum.

Wei Wang and Nicholas Estes contributed equally as lead authors.
Wei Wang, Nicholas Estes, Nicolas Garcia, and Jonathan Chisum are with

the Department of Electrical Engineering, University of Notre Dame, Notre
Dame, IN, 46556 USA (e-mail: wwang23@nd.edu; nestes@nd.edu; abol-
stad@iastate.edu; jchisum@nd.edu). Matthew Roddy was with the Department
of Electrical Engineering, University of Notre Dame at the time of the work
and is now with Cornell University, Ithaca, NY, 14850 USA. Andrew Bolstad
is with the Department of Electrical and Computer Engineering, Iowa State
University, Ames, IA, 50011, USA.

~
~

(a)

(d)

0.5𝝀𝝀

0.725𝝀𝝀

D=4”(10𝝀𝝀)

F/D=0.5

0.8”

𝟏𝟏 element 
active

All P Elements
active

0.7𝝀𝝀 0.5𝝀𝝀

~

… …
0.5𝝀𝝀0.7𝝀𝝀

0.5𝝀𝝀 envelope
0.7𝝀𝝀 envelope

(b)

n≪N
active

29GHz

0.5𝝀𝝀 envelope
0.7𝝀𝝀 envelope

Coma lobe

Lower lobe

(c)

n≪N
active

PAFL

Fig. 1. (a) A phased-array with 0.5λ–spaced feeds. All P feeds are active for
all beam angles. (b) A switch-beam lens antenna uses a single feed for each
beam angle and is not confined to 0.5λ spacing but cannot scan to arbitrary
angles or shape the beam. (c) The proposed phased-array-fed lens antenna
combines a widely spaced (0.7λ) phased-array feed with N elements (N <
P ) and a lens to reproduce the capabilities of a phased array using a small
collection of n feeds (n << N < P ). (d) The prototype PAFL employing
4” (101.6 mm) gradient-index (GRIN) lens antenna with focal length F =
2” and 8-element 29 GHz linear patch array (0.725λ–spaced) driven by a
commercial Ka-band SATCOM transmit beamformer IC.

[9]. However, in order to realize this degree of reconfigura-
bility, PAA elements must maintain λ/2 spacing. High-gain
PAAs thus require a large number (P , ranging from 100’s
to 1000’s) of elements and corresponding beamformer ICs,
making PAA solutions costly and power-inefficient. Given
the broad scope of anticipated deployment, high performance
PAAs are not always a practical solution.

In an effort to reduce cost and power, various alterna-
tive PAA configurations have been proposed. For example,
‘thinned’ phased array systems selectively turn off elements
based on optimization algorithms and thus achieve lower
power consumption while retaining a critically sampled array
[10]–[12]. Similarly, ‘sparse’ phased array systems reduce
the total element count using optimized element locations
that exceed the critical sampling threshold, further reducing
cost [12]–[17]. However, these techniques are unsuitable for
aggressive beamforming due to their relatively narrow FoV,
propensity for grating lobes [12], [18], and inability to explic-
itly control the beam shape.

An alternative approach to PAA beamscanning is the
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switched-beam gradient index (GRIN) lens antenna as shown
in Fig. 1(b). Modern MMW GRIN lenses demonstrate high
aperture efficiency and extremely wide bandwidths [19]–[33].
GRIN lenses can also achieve high quality beam-scanning
over a wide FoV by utilizing Luneburg-type lenses [22]–
[26], [33], [34] or compound lens systems [35], [36]. In this
configuration, each feed element beneath the lens generates
a beam at a particular angle and scanning is achieved by
activating one element at a time. Given the passive nature of
the lens and the near-absence of active electronics, this system
is highly power efficient. However, switched-beam systems are
constrained by the element sampling and thus cannot scan
to arbitrary angle or apply beam-shaping. The latter is of
particular concern for far-scanned beams where beam qualities
(i.e., gain, sidelobe level, coma lobe) are most degraded.

The beamforming performance of switched beam systems
can be improved by feeding the focusing element with a
PAA—this approach has been demonstrated with both lens
systems and reflectors (for which the low-power switched-
beam method is also viable) [37]–[47]. In the latter context, the
phased-array-fed-reflector (PAFR) technique is employed to
achieve optimal illumination but is not typically used for wide-
angle scanning. Indeed, PAFRs demonstrate a high degree of
flexibility but are constrained by the limited FoV intrinsic
to high-gain reflector systems [48]–[50] and suffer from feed
blockage.

Phased array fed lens (PAFL) designs are potentially more
appealing for wide-FoV applications and have no feed block-
age, but to date the concept has not been fully explored. In
[41], a feed array and lens were co-designed using FEM and
GO techniques, but the lens was not fed at the approximate
focal plane, leading to a large number of simultaneously
active antennas. In addition, the design methodology optimized
for directivity only, ignoring side lobe level (SLL). In [42],
amplitude-only beamforming strategies are explored in simula-
tion to fill the low-gain nulls between available beams. In [43],
a beamforming array is employed behind a metasurface-based
lens in order to reduce the antenna system depth by feeding
forward of the focal point. This necessarily requires a larger
number of active feed antennas, and the investigation considers
only gain maximization using phase control. In [44], an array-
fed lens antenna system is employed for beam-shaping, but
only considers the case in which a wide beam is desired, which
allows for amplitude-only beamforming assuming equal feed
phase. In [45], an optimization for feed weights employing
target beam shapes is used to improve beamscan performance
in a dielectric lens antenna. In [46], [47], a theoretical lens
antenna array model is derived assuming lenses with large
F/D and it shows reduced signal processing complexity
compared with arrays. In [51], a beam-switching array is
designed with a Rotman lens and realizes fixed beam scanning
up to ±30◦.

In this work we propose a PAFL antenna which combines N
widely spaced (> 0.5λ) phased-array feed elements to further
reduce power, cost, and complexity as shown in Fig. 1(c). As
we will show, the PAFL has a well-behaved scan envelope
(with reduced scan loss relative to a single lens antenna
and no nulls between beams), controlled sidelobes, low-coma

lobe, and even multi-beam operation. Due to the feed array
sparsity, a PAFL requires fewer total feed array elements
than a corresponding PAA (N < P ) and can even generate
a given beam using a smaller number, n << N , of the
available feed elements. For example, our 0.725λ–spaced, 8-
element prototype [see Fig. 1(d)] discussed in Section IV uses
2.1× fewer feeds than a critically sampled PAA and requires
as few as 4–6 active feeds to produce high quality beams.
The PAFL offers a continuous trade-space between a PAA
(P active feeds) and a switch beam antenna (1 active feed).
That is, 1 < n << N < P , which represents a significant
cost savings and potentially orders of magnitude lower power
dissipation relative to a PAA while being able to produce
significantly higher quality beams than a switch-beam lens
antenna and at arbitrary angles. The flexibility, performance,
and potential for cost and power savings of the PAFL offer a
compelling solution for the massive deployment of high-gain
MMW beamscanning antennas that are required for current
and future wireless communications systems.

One of the key contributions of this work in Section II
is a proposed system model and theoretical framework for
PAFL with optimal feed weights as well as a multi-objective
PSO method for finding feed weights. We develop an optimal
solution which only requires complex far-fields1 at the desired
angle. This is in contrast to the conjugate field matching
approach used in [37]–[40] which requires knowledge of the
fields in the focal plane (often a difficult quantity to measure),
therefore this method is simpler to implement. Another key
contribution of this work in Section III is a robust exploration
of the tradeoffs of feed spacing and the conclusion that spacing
on the order of 0.7λ is often acceptable. In Section IV we
demonstrate high quality beamscanning with the proposed
method, achieving an improved scan loss exponent. Finally,
in Section V we show that the PAFL can realize many of the
most important capabilities of a PAA and we demonstrate
the method is general by applying it to several state-of-
the-art lenses from the literature. While the PAFL approach
can generally improve the performance of a switch-beam
lens antenna system, beamscan performance is fundamentally
limited by the FoV of the basis beams—therefore the lens
should be designed for wide-FoV operation. Further, since
n << P , the effective isotropic radiated power (EIRP) of
a PAFL system will be lower than an equivalently sized PAA.
This is discussed further in Section VI.

II. BEAMFORMING THEORY

In this section we describe the system model and derive
the optimal complex feed weights to achieve maximum gain
at arbitrary scan angles across the FoV. We also introduce a
multiobjective optimization method employing particle swarm
optimization (PSO) to find the globally optimal weights for
satisfying multiple FoMs.

1In Section III the reader will note that we use a near-field antenna range
to capture the far-field pattern. This is fundamentally different from the
conjugate field mapping approach because the near-field antenna range only
scans outside the physical envelope of the integrated feed-array/lens system.
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A. Problem Setup, General Formulation

In order to motivate widely-spaced feed elements, consider
the idealized PAFL system shown in Fig. 2(a) in which the
n and n + 1 feed elements produce far-field electric fields
Eθ,n(θ, φ),Eφ,n(θ, φ) and Eθ,n+1(θ, φ),Eφ,n+1(θ, φ), respec-
tively. The corresponding beam angles are separated by ∆θ
equal to the angular spacing of the feeds (as in an idealized
Luneburg lens) and have a crossover gain Gx that is below
the feed beam peaks (Gb). In this paper we refer to the beam
produced by a single feed element as a basis beam. The n and
n + 1 feed elements are driven by complex weights sn and
sn+1, respectively and are separated by an arc length R∆θ. If
the lens is assumed to produce an idealized uniform aperture
field distribution at all feed angles the resulting beams are sinc
functions versus angle.

Assuming any two feed locations are fixed there is a region
with lower gain between each basis beam (referred to as
the “null”). To ‘fill the null’ all N beams can be optimally
combined to produce the highest gain at the angle exactly
between the two basis beams (using the gain solution of
Appendix A). This synthesized beam can in fact have higher
gain at the null than each basis has individually, and the ratio
of the gain of this synthesized beam to Gb is denoted as ∆G.
As the spatial (or angular) separation between feed n and
n+1 increases Gx reduces and filling this null becomes more
difficult (Fig. 2(b)). The mapping from crossover to spacing is
shown explicitly in Fig. 2(c) for a variety of assumed aperture
efficiencies (marked as ηap) ranging from 0.6 to 0.8. For feed
spacing out to approximately 0.7λ the gain between two beams
can be approximately equal to the gain of the basis beams (at
their corresponding angles). If the feeds are closer (e.g., 0.5λ),
∆G (in dB) actually becomes positive. This simplified analysis
justifies the feed approach proposed in this work.

Fig. 2(c) also summarizes the various simulations and mea-
surements included in the remainder of this work. The theoret-
ical Luneburg lens simulations (solid traces) with different ηap
(and correspondingly, different beamwidths) are representative
of a wide range of practical antennas and demonstrate that
feed elements could be spaced between 0.6–0.8λ with no
significant drop in gain (∆G ≥ 0 dB) across the FoV. Between
these theoretical curves, several practically-realized feed/lens
systems are included. The purple circle markers show the
measured gain improvement using the standard gain horn feed-
antennas over a wide range of feed spacing from 0.5–1.0λ, as
discussed in Section III. These results indicate that gain begins
to drop for feed spacing beyond 0.8λ. Green triangle mark-
ers show simulated gain improvement using an open-ended
waveguide-fed lens, and confirm a feed spacing of 0.8λ—
this investigation is discussed in Section V. These preliminary
investigations indicate that a 0.7λ–0.8λ feed spacing range can
maintain gain across the FoV. Therefore, the prototype PAFL
system discussed in Section IV of this work is a 0.725λ–spaced
feed array (indicated with magenta triangle markers).

One of the objectives of this work is to establish a method
for computing optimal feed weights s for a desired objective
(e.g., maximum gain at an arbitrary angle, including between
basis beams) based upon measured (or simulated) complex

𝑅𝑅Δ𝜃𝜃

RΔ𝜃𝜃

𝐺𝐺𝑏𝑏 𝐺𝐺𝑥𝑥
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Fig. 2. (a) Model of a PAFL system. assuming an idealized sinc-pattern
lens with no scan loss. (b) For this model, beamforming can increase gain
relative to the basis beams as long as the crossover between adjacent beams
is less than about 3.8 dB. As such it represents a cutoff for high-performance
operation. (c) Beamformed gain improvement over feed spacing for multiple
aperture efficiencies (ηap). Higher aperture efficiency lenses benefit less
from beamforming. For the lens employed in this work, 0.7λ corresponds
approximately to a ∆G of 0 dB. Vertical dashed lines indicate the feed
spacings investigated further and shown in Fig. 4.

fields (or radiation patterns) from a realized system. Since
each feed produces a single basis beam which is scaled by
the complex weight of each feed s and the total field is the
superposition of all feeds, the resulting electric field in the
far-field can be expressed as a vector of complex feed weights
multiplied by a lens system matrix, H ,

e = Hs, (1)

where H ∈ C is an M ×N matrix consisting of the electric
field response at M angles (θ, φ) in the far-field due to a unit-
excitation at each of the N feed elements. θ ∈ [−π2 , π2 ], φ ∈
[−π, π]. M/2 of the rows represent Eθ and the remaining M/2
represent Eφ. Each column represents the nth basis beam. The
N×1 s ∈ C are phasors representing normalized driving point
voltages such that s2

n is equivalent to input power at the nth

feed. We use the convention that boldface capital letters denote
matrices and boldface lower-case letters denote vectors. Below
is an example of this matrix, where the first index refers to far-
field angle θ and the second to φ and the subscripts indicate
field polarization and feed index:

H =



Eθ,1(−π, 0) . . . Eθ,N (−π, 0)
...

. . .
...

Eθ,1(θ0, φ0) . . . Eθ,N (θ0, φ0)
...

. . .
...

Eθ,1(π, 2π) . . . Eθ,N (π, 2π)
Eφ,1(−π, 0) . . . Eφ,N (−π, 0)

...
. . .

...
Eφ,1(θ0, φ0) . . . Eφ,N (θ0, φ0)

...
. . .

...
Eφ,1(π, 2π) . . . Eφ,N (π, 2π)



. (2)
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The M×1 vector e ∈ C is the resulting total electric field due
to a particular array excitation. The matrix in (2) is referred
to as the “H matrix”. In some cases we will select M <
N columns of the H matrix (feeds) to form an H submatrix.
Such submatrices will also be referred to as H matrices or H
unless the distinction is relevant. We present two algorithms
below to determine the appropriate feed weights s for a high-
quality beam at a given steering angle: a rigorously accurate
“max gain” algorithm generated from constrained optimization
theory and a global solver implemented using particle swarm
optimization (PSO).

It may be shown (see Appendix A), that the maximum
possible gain is achieved at angle (θ0, φ0) when:

s = h∗0, (3)

where h0 is the row vector of H corresponding to the (θ0, φ0)
steering angle and (·)∗ is the conjugate transpose operator.
Moreover, when removing columns from H (reducing the
number of simultaneously active feeds), it may be shown that
the feeds corresponding to the smallest magnitude elements
of h0 should be removed first (see Appendix A). For other
figures of merit this selection criterion is no longer rigorously
true but remains a useful heuristic.

The maximum gain solution is closed-form and essentially
instantaneous to compute. However, it possesses some draw-
backs, namely:

1) It only optimizes gain and cannot address, e.g., sidelobe
levels directly.

2) Although the gain in the direction of the steering angle
is guaranteed to be the maximum possible for the set of
feeds chosen, the steering angle is not guaranteed to be
the angle at which the radiation pattern is maximized
(that is, the gain may be higher at other angles).

Alternatively, a FoM can be defined to describe the desired
beam(s) and a global optimizer can be used to solve for the
beam weights that produce the highest FoM. We investigate
such a global solver employing PSO in the next section.

B. PSO Solver

To define a useful FoM, we first consider the desirable
aspects of a beam (see Fig. 3(b)):

1) high gain at steering angle G(θ0),
2) low sidelobe level (SLL),
3) angle of maximum gain corresponds to desired beam

angle (θ0), and
4) low main-beam width (∆θ).

Although in practice there may be some correlation between
these characteristics, it is convenient to track each of these
characteristics independently. A total FoM may be defined as

FoM =

∑
i wifi(Hs)∑

i wi
, (4)

where the fi(Hs) denotes a functional assigning a scalar
‘score’ to a beam-characteristic-specific FoM and the wi are
scalar weights to assign relative importance. We choose here to
define our fi using integrated sigmoids. Sigmoid cost functions

𝑉𝑉 𝑯𝑯𝑯𝑯 = 𝐺𝐺 𝜃𝜃0

𝐹𝐹𝐹𝐹
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𝚫𝚫𝜽𝜽
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Fig. 3. a) Example integrated sigmoid component FoM for gain, which
exhibits a constant slope (L) up until around the target gain (T), at which
point the slope transitions to another constant slope (H), with transition
sharpness K (“knee”). b) The full FoM considers steering angle accuracy,
gain at the steering angle (G(θ0), SLL, beam angle (∆θ), and main beam
width errorwidth.

are common in optimization frameworks and sigmoids have
also recently been employed specifically in particle swarm
optimization approaches to dynamically alter the acceleration
coefficients [52]–[54]. Since sigmoids are a class of function
that are continuous, monotonic, differentiable, and asymp-
totically constant, then integrated sigmoids are continuous,
monotonic, and differentiable, and asymptotically linear:

fi(Hs) =
H − L
K

[
log(KeT−V (Hs) + 1)

]
+ L(T − V ) + 1,

(5)
where V (·) is a functional that maps Hs to a scalar beam
characteristic such as Gain and T is the target value of V (Hs).
L denotes the asymptotic slope when V (Hs) < T , H denotes
the asymptotic slope when V (Hs) > T , and K is a parameter
controlling the transition sharpness at T . In general, V (Hs) ≥
T should represent a good component FoM score. Fig. 3(a)
shows an example of an integrated-sigmoid FoM component
curve. The major benefits of the integrated sigmoid function
are:

• Since the sigmoid is differentiable, gradient-based ap-
proaches may be employed if necessary.

• The asymptotic slopes may be tuned such that the impor-
tance of improving a component FoM score diminishes
once a desired target T has been hit – however, there is
still an incentive to improve upon this value if possible

V (Hs) and T are defined for each component FoM. With
reference to the four desirable quantities of beams above (and
Fig. 3(b)):

1) High gain: V (Hs) and T are defined logarithmically—
T is at or above the basis gain.

2) Low SLL: V (Hs) is the difference in logarithms be-
tween the global gain peak and the highest sidelobe
peak. T is generally set from −10 to −15 dB.

3) Steering angle: V (Hs) is the angle of the beam pattern
maximum. T is the desired beam angle.

4) Low beam width: V (Hs) is the integral of the loga-
rithmic gain above a threshold (shown graphically as
the SLL threshold) in an angular region excluding the
desired beam width. T is zero. Fig. 3b shows an example
region of integration (errorwidth).
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These FoMs will be referred to as fgain, fSLL, fangle, and
fBW for notational consistency with (5). Their corresponding
weights are referred to as wgain, wSLL, wangle, and wBW.
fgain was assigned an H of 0.2 to allow for unlimited gain
improvement and all other fi had H = 0.

For all optimized beam weights, the MATLAB “parti-
cleswarm” function (from the Global Optimizer Toolbox)
was used, although many particle swarm implementations
exist. Convergence is aided by seeding half of the particles
within a 2N-dimensional sphere centered at the solution of
the max gain solver, which reduces the number of iterations
by a factor of 2. More sophisticated strategies for improving
optimizer efficiency may be necessary for tractable lens-array
co-design, but were not required for this work and will not
be discussed further. In the following two sections we will
validate the above theory and demonstrate it with a prototype
PAFL and commercially available Ka-band SATCOM transmit
beamformer IC.

III. VALIDATION

A. Null-Filling, Maximum Gain
In this section the theoretical results from Section II will

be validated using a 4”-diameter (101.6 mm) planar GRIN
lens (described in [19], [30]) and fed with 10 dBi standard
gain horn antennas. Fed in such a way the lens has broadside
aperture efficiency above 60% over the WR-28 band (26.5
to 40 GHz). In order to confirm the gain-improvement (∆G)
versus feed spacing from the simplified analysis (Fig. 2c) the
feed horn was placed across the bottom of the lens (in the
focal plane) in steps of 0.1λ. At each location the complex far-
field basis beams were recorded using an NSI-MI near field
scanner with an angular coverage up to 60◦ from broadside. A
full edge-to-edge set of basis beams was created by assuming
symmetry across the lens center. While a 0.1λ feed spacing is
not physically realizable, the tight spacing on measured beams
allowed us to better investigate the effect of array spacing on
beam quality (specifically d = 0.5λ, d = 0.7λ, and d = λ, as
shown by the columns of Fig. 4 and inspired by the results of
Fig. 2(c)). The measured basis beams are shown in Fig. 4(a)-
(c). This system has high quality near-broadside basis beams,
exhibiting -20 dB SLL. Beam quality noticeably degrades over
scan with farther-out beams exhibiting reduced gain, larger
beamwidth and reduced SLL. Throughout this manuscript gain
reduction versus scan angle will be characterised with an
empirical scan-loss exponent where gain reduces as cosns(θ).
For example, the scan-loss exponent of the basis beams is
ns = 5.0.

Fig. 4(d-l) shows the null-filling results for each array
spacing. Using (3), we synthesize maximum-gain beams only
at the nulls from θ = 0◦ to the edge beams, shown in Fig.
4(d)-(f). Even though we are forming beams at the ‘worst-
case’ locations, the beams synthesized by the 0.5λ and 0.7λ
arrays show better gain and lower scan loss than the bases.
Specifically, the cos5(θ) scan loss of the bases go to cos3.2(θ)
for the 0.5λ array and cos3.6(θ) for the 0.7λ array. Note the
poor quality and low gain of the 1λ array beams, as expected
from Fig. 2(c), because it greatly exceeds the approximately
0.8λ spacing limit.

To better visualize beam quality and achievable gain be-
tween basis beams, we synthesize only near-broadside beams
in Fig. 4(g-l), that is, between the broadside beam at θ = 0
and the next closest basis beam. For the 0.5λ and 0.7λ arrays
(Fig. 4(g)(h))), the synthesized beams attain higher gain than
their respective basis beams while retaining extremely low
sidelobe level (SLL < −20 dB). For the 1λ array (Fig. 4(f)),
achievable gain at the null angle is in fact greater than that
achievable by any single basis at that angle, but the null
beams do not have gain commensurate with the bases and
exhibit poor quality. Fig. 4(j)-(l) are zooms of the peaks of
Fig. 4(g)-(i), respectively. The 0.5λ synthesized beams have
an additional 1.46 dB of gain compared to the basis beams,
and the 0.7λ synthesized beams can fill the null with only
marginal improvement in gain at the broadside basis (0.16 dB).
For the 1λ array (Fig. 4(k)), the beams synthesized exhibit
either severe degradation within the beam null or exhibit a
maximum gain that does not coincide with the steering angle.

Fig. 5(a)-(d) shows the peak gain achievable at any given
steering angle from 0◦ − 45◦. For comparison, the maximum
gain at each steering angle due to excitation of a single basis
beam is also shown. For all three spacings, the basis beam
envelopes are lower than synthesized beam envelopes with
ripples representing nulls. Fig. 5(a) shows the improved scan
loss of cos3.2 θ for 0.5λ spacing and Fig. 5(b) shows the
improved scan loss of cos3.6 θ for 0.7λ spacing. For the 1λ
spacing of Fig. 5(c), the synthesized gain envelope follows
the basis nulls for low beamscan, but can eventually fill the
nulls for large scan angle due to the relatively high crossover
of the far basis beams. Fig. 5(d) directly compares the gain
envelope for the three feed spacings, indicating a tradeoff
between power consumption and maximum gain.

B. Multiobjective Beamforming

Although the previous results were all achieved using (3),
PSO provides far greater control over the beam patterns.
If wgain dominates or the beams are near broadside, the
PSO results agree almost perfectly with the maximum gain
solution as seen in Fig. 6(a). However, especially for beam-
scan, if either fSLL or fBW are relatively highly weighted, the
synthesized PSO and ‘maximum gain’ beams will differ, as
shown in Fig 6(b). The reference beam is from Fig. 4(e) for
an 18◦ target with a target 3-dB beamwidth of 9.6◦ and SLL of
20 dB. By assigning larger weights for SLL and beamwidth,
the PSO-synthesized beam achieves a 3-dB beamwidth of only
8.3◦ and a SLL of 23 dB with 0.7 dB gain reduction (relative
to the maximum gain solution). Overall, the result shows the
feasibility of PSO in practical beamforming synthesis.

IV. BEAMFORMING MEASUREMENT AND RESULTS

Now that the method has been demonstrated with measured
data (albeit collected from a single scanned feed element), in
this section we validate the method using a practical phased-
array feed. Figure 7(a) shows the prototype measurement setup
where the same 4” GRIN lens is fed by an 8-element patch
array which is driven by a beamformer IC. Fig 7(b)(c) show
the side view and zoom figure of the measurement setup.
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(a)

𝐜𝐜𝐜𝐜𝐜𝐜𝟑𝟑.𝟐𝟐 𝜽𝜽
𝐜𝐜𝐜𝐜𝐜𝐜𝟓𝟓 𝜽𝜽

(h)(g) (i)

(b) (c)

(d) (e) (f)

(k)(j) (l)

2.5° 0°
7.5°

10°

5°

𝐜𝐜𝐜𝐜𝐜𝐜𝟑𝟑.𝟔𝟔 𝜽𝜽
𝐜𝐜𝐜𝐜𝐜𝐜𝟓𝟓 𝜽𝜽

1.46 dB
0.16 dB

Basis Beam
Max Gain

Fig. 4. Beamforming results for uniform linear arrays with three inter-element spacings: 0.5λ in first column, 0.7λ the second column, and 1λ in the third
column. The basis beams are shown in (a-c). Perfect symmetry in the bases is observed because beams steered to negative θ were obtained by reflecting beams
across θ = 0. Closer array spacing corresponds to greater overlap between beams. Figures (d-f) demonstrate null filling performance using the maximum
gain solution out to a θ0 = 40◦. For the 0.5λ and 0.7λ arrays, ‘null-steered’ beams exhibit equal or greater gain than the original bases, and the beam scan
exponent is reduced significantly. Figures (g-i) show beam-scanning near broadside, and figures (j-l) zoom in on the peaks of (g-i). Note that the 1λ–spaced
beams show significant gain reduction within the null. Moreover, due to poor beam shape, the gain solver is unable to satisfy the beam-steering requirement,
with the maximum gain of synthesized beams observed at θmax 6= θ0 (see the 5◦ beam).
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𝐜𝐜𝐜𝐜𝐜𝐜𝟑𝟑.𝟐𝟐 𝜽𝜽𝐜𝐜𝐜𝐜𝐜𝐜𝟓𝟓 𝜽𝜽

𝐜𝐜𝐜𝐜𝐜𝐜𝟑𝟑.𝟔𝟔 𝜽𝜽𝐜𝐜𝐜𝐜𝐜𝐜𝟓𝟓 𝜽𝜽

Fig. 5. (a)-(c) Basis beams (dashed gray traces), basis beam envelope (solid
black), and synthesized beams using (3) for 0.5λ– , 0.7λ– , and 1λ–spaced
feed arrays. The basis envelope exhibits gain ripple due to nulls between fixed
basis beams. For 0.5λ spacing, a > 1.5 dB gain and scan loss improvement
are achieved over For 0.7λ, both benefits are less dramatic. 1λ spaced feeds
exhibit gain ripple due to deep nulls between basis beams.

(a)

(b)

Fig. 6. Comparison of synthesized beams at 0.7λ spacing using PSO and
the maximum gain solution. (a) When the PSO method is used with a gain-
dominated FoM the PSO beam shape and peak gain values agree well with the
max gain solution for all angles. (b) A multi-objective PSO beam synthesis
which heavily weights sidelobe level and beamwidth results in a lower gain
but a narrower beam with lower sidelobes.

Fig. 7(d)(e)(f) show the patch element model in HFSS in
different views. The patch comprises two layers of Rogers
RO4350 (εr = 3.66), separated by a common ground. The
upper dielectric layer is 10 mil thick and the lower is 20
mil. Shown on Fig. 7(d), the patch elements are 2.4 mm ×
3.51 mm and pin-fed at an inset location which optimizes input
match, which is 1.755 mm and 0.75 mm away from the lower
right patch corner in x− and y−axis, respectively. Fig. 7(e)

shows the bottom feed line connecting the feed pin and SMPM
connector. The feed pin transitions to a back-side microstrip
line and finally to an SMPM connector footprint. The realized
8-element feed array is a 0.725λ–spaced linear patch array
operating at 29 GHz with 3 dBi directivity per feed as shown in
Fig. 7(g)(h). The time-gated S11 measurement for all patches
is shown in Fig. 7(i) (time gating was used to remove free-
space coupling), indicating resonance at 29 GHz. We note that
in a practical system larger feed arrays would be necessary in
order to address the entire FoV of the lens. To this end any
method of phased array design is acceptable including RF,
LO, and IF beamformers, full-digital beamformers, and even
hybrid arrays.

As stated earlier, one of the benefits of a widely-spaced feed
array is the reduction of mutual coupling. In order to confirm
the that the mutual coupling is low we have measured the
port-to-port coupling |Sij | of the eight-element patch array
as shown in Fig. 8(a). Note that an eight-element array has
64 mutual coupling terms but, due to symmetry, only 28
Sij terms and eight Sii terms are plotted. For this 0.725λ–
spaced feed array all mutual coupling terms are below -18 dB
while simulation of an identically array scaled to 0.5λ–spacing
exhibits a worst-case mutual coupling of -12 dB (6 dB higher
coupling). Another possible form of mutual coupling in a
PAFL system is through reflected power from the ith port,
off the bottom of the lens and into the jth port. Figure 8(b)
shows the mutual coupling from port one to all other ports
|S1j |∀j ∈ [1, 8]. Solid traces show the S1j without the GRIN
lens present and dashed traces are with the GRIN lens present.
There is almost no deviation between the two confirming that
the mutual coupling via lens reflections is insignificant.

The 4” GRIN lens [see Fig. 9(a)], previously described in
[30] has 27.3 dBi broadside gain at 29 GHz when fed with a
10 dBi horn feed from the previous section and a radiation
efficiency of 74%. However, in the PAFL configuration it is
fed with the 8-element patch array at its approximate focal
plane (F/D = 0.5). Since the lens is ∼10λ in diameter and
the patch array is only 5.075λ wide, two array locations are
used in order to record basis beams across the entire field-
of-view of the lens, as shown in Fig. 9(b). The complex beam
weights of the patch array were produced by an 8-channel Ka-
band Satcom transmit beamforming IC evaluation board (IDT
F6502) with 8 bits of gain control and 6 bits of phase control. It
was confirmed that quantization errors (due to limited number
of bits) had a minimal effect on the resulting beams.

All basis beams and synthesized beams were measured us-
ing a standard planar near-field scanning system manufactured
by NSI-MI (https://www.nsi-mi.com). The system employs
standard near-field probing techniques and near-field-to-far-
field calculation software to determine the far-field radiation
pattern of the test antenna [55]. Figure 7(b) and (c) show the
WR28 OEWG near-field (NF) probe in the scan plane, offset
3λ from the front of the GRIN lens.

A. Measurement Setup and Calibration

The theoretical results presented in Section II assume that
all feed elements are identical. For any practical (non-ideal)
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Fig. 7. (a) Measurement setup schematic for the array-fed lens antenna. The pattern is measured by an NSI-MI planar near field scanner. (b) Side view of
the measurement setup. (c) A zoom figure of the measurement setup. A single feed array patch element model is shown in (d) top-view (e) bottom-view, and
(f) side-view. (g) Bottom-view of the fabricated patch array. (h) Top-view of the fabricated patch array.(i) Measured |Sii| for 8 patches.

(a)

(b)

Fig. 8. (a) Mutual coupling |Sij | of the entire eight-element 0.725λ–
spaced feed array, omitting redundant measurements. The vertical dashed trace
indicates the operating frequency and the horizontal dashed trace is at -18 dB
and indicates the worst-case mutual coupling. (b) Passive feed array mutual
coupling |S1n| relative to port one, with (dashed) and without (solid) the
GRIN lens present.

system a calibration is necessary to account for antenna loss
and imbalances between transmit channels. Equation (1) can
be rewritten as,

e = H(ε ◦ s), (6)

where ε is a column vector representing per-channel voltage
loss and ◦ represents the Hadamard product. Due to the imbal-
ance in channels, using (3) directly could result in undesirable
beam patterns. Since we are ultimately interested in beam

Position I

NF probe

GRIN lens

Patch array

x
z Position II

(a)

(b)

3𝝀𝝀

4”

0.8”

Fig. 9. (a) A photo of the 4” GRIN lens [30]. (b) Basis beam measurement
positioning.

patterns, we use directivity instead of gain as the metric of
choice. It can be shown (Appendix B) that maximizing the
metric

|h0s|2

‖Hs‖2
(7)

is equivalent to maximizing directivity (for uniform sampling
of the radiating sphere in solid angle), and furthermore, that
the solution to the above using the method of Lagrange
multipliers is given by ((33) in Appendix B) and repeated here
for convenience:

sopt,d = (H∗H)−1h0. (8)
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Fig. 10. Theoretical synthesized beams using the calibrated gain solver and
the directivity solver show substantial agreement, confirming the suitability of
the proposed directivity solver. Five beams are used to synthesize the target
beam at θ = 0◦.

Although one could directly use (8) for the calculation, (3)
is substantially faster than the maximum directivity solution
(O(N) vs. ∼ O(NM2), where N is the number of antennas
and M the number of rows corresponding to sample points
on the radiating sphere). This would be particularly important
for lens/array co-optimization approaches in which the optimal
weights must be computed for any candidate lens design. In
order to make (3) for solving for directivity, the gain metric
should be a maximum at sopt,d. If this is true, both algorithms
will return the same weights and thus the resulting beams will
be identical. This can be satisfied by assuming there exists an
H ′ that, when inserted into (3) will return sopt,d:

s′opt,g = h′∗0 = (H∗H)−1h∗0 = sopt,d. (9)

Solving for H ′ and making the substitutions that h0 =
gTH and h′0 = gTH ′, where g is a column vector that
consists of all zeros except for the index corresponding to
the row denoting the beam steering angle and [·]T denotes the
matrix transpose:

h′∗0 = (H∗H)−1h0

(gTH ′)∗ = (H∗H)−1(gTH)∗

H ′∗g = (H∗H)−1H∗g

H ′∗ = (H∗H)−1H∗

H ′ =
[
(H∗H)−1H∗

]∗
.

(10)

By making this substitution, we ensure that, regardless
of power imbalance between the channels, we will identify
weights that maximize beam quality. Moreover, this calibrated
gain metric can even be used for PSO. In fact, this substi-
tution is equivalent to a version of the maximum directivity
solution using a look-up table to speed up execution (i.e., pre-
compute (H∗H)−1). Fig. 10 shows a comparison of 5-feed-
synthesized 0◦ beams using the calibrated gain and directivity
solutions. The calibrated weights are: 0.64ej93◦

, 0.79ej−117◦
,

1ej0
◦
, 0.97ej30◦

, 0.41ej−141◦
. The weights given by the

maximum directivity solution are: 0.59ej81◦
, 0.86ej−128◦

,
1ej0

◦
, 0.92ej27◦

, 0.40ej−149◦
. Thus the calibrated gain is

effectively equivalent to the maximum directivity solution,

with error likely due to numerical error from matrix inversion.
All measurements involving the maximum gain solution in
the following sections implement this calibrated gain solution.
One of the benefits of this calibration is that it results in an
optimal gain for a given PAFL realization without requiring a
detailed investigation into loss mechanisms.

B. Null-filling Measurement

To demonstrate measured null-filling, due to the finite
fabricated array length, we are not able to use all possible
basis for synthesis and must choose an array position for each
measurement as shown in Fig. 7(h). The measured basis beams
are shown on Fig. 11(a) with a ±55◦ scan range. The broadside
basis beam crossover level is -2.5 dB. Note that although the
4-inch lens was initially designed for a 10 dBi horn antenna
as the feeding element, these horns are impractical as array
elements due to large aperture size. As a result, the patch-fed
basis beams are degraded from the horn simulations, especially
at the edge of the lens due to radiation spillover. Using the
calibrated maximum gain solution beams were synthesized
theoretically in the nulls between the measured basis beams,
as in Fig. 4(d-f), and the results are shown in Fig. 11(b). The
theoretically derived beams are shown in dashed red, which
ideally will be identical to the measured synthesized beams
in blue, because the theoretical beams are still derived from
measured bases. Differences between the measurement and
theoretical beams can result from imperfect calibration or
temperature variations between basis measurement and beam-
scan measurements.

The synthesized beams at 0◦, 7.6◦, 14.2◦ and 21.6◦ are
synthesized with the array in Position I, and the beams at
28.4◦, 37.6◦ and 50◦ are synthesized with the array in Position
II (Fig. 9(b)). Complex weights for each scanning angle are
provided in Table I. As expected, measured beams are in
excellent agreement with the corresponding theoretical beams.
The synthesized beam at 0◦ achieves directivity of 26.65 dB
in theory and 26.5 dB in measurement, nearly as high as the
two neighboring basis beams with directivities of 26.67 dB
and 26.62 dB. In general, as with Fig.4(e), we are able to
synthesize beams with directivity commensurate with the basis
beams near broadside. Moreover, synthesized beams exhibit
a greatly improved scan loss (from cos5(θ) to cos3.6(θ)).
We note that while the proposed method can improve scan
loss, it cannot produce high directivity at angles where high-
directivity basis beams do not exist—in other words, the
method is capable of producing maximum directivity at a given
angle but the maximum directivity is limited by how much
energy the lens is capable of focusing toward that angle. PAFL
can improve scan loss in angular regions where basis beams
exist (and hence, reduce the scan loss exponent) but it cannot
increase the FoV where no basis beams exist.

V. GENERAL BEAMFORMING FUNCTIONALITY

The objective of the PAFL is to provide the majority of
the functionality expected of a phased array at reduced cost
and a fraction of the power. In this section we demonstrate
how the proposed system generalizes to other lens designs in
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cos5 θ

Fig. 11. (a) The measured basis beams at φ = 0◦ for the 0.725λ patch array feed follows an approximate cos5(θ) scan loss envelope. (b) Null-filling
measurement at angles halfway between adjacent basis beams. The red dashed lines are the theoretical synthesized beams based on measured bases and blue
solid lines are measured beams using the prototype system. Each beam is formed using only five basis beams out of eight. Not only can nulls be filled, but
directivity increases for beams at large θ, resulting in a lower scan loss exponent (from ns = 5 to ns = 3.6).

TABLE I
COMPLEX FEED WEIGHTS (DB,DEGREES) FOR EACH SCAN ANGLE IN FIG. 11.

Angle (deg) P1 P2 P3 P4 P5 P6 P7 P8

0 OFF -3.8 dB6 − 54.2◦ -2.1 6 96.3◦ 06 0◦ -0.3 6 − 65.7◦ -7.8 6 − 173◦ OFF OFF

7.6 OFF OFF OFF -12.96 − 136.4◦ -2.7 6 − 103.3◦ 06 0◦ -5.9 6 70.1◦ -9.16 115.7◦

14.2 OFF OFF OFF -17.86 − 104.9◦ -19.7 6 78.3◦ -1.1 6 17.3◦ 06 0◦ -6.26 101.4◦

21.6 OFF OFF OFF -19.9 6 − 160◦ -13.2 6 125.4◦ -17.3 6 5.8◦ -2.9 6 135.5◦ 06 0◦

28.4 OFF OFF -26.7 6 − 117.1◦ OFF 06 0◦ -1.2 6 − 25.4◦ -14.7 6 − 128◦ -14.5 6 − 67◦

37.6 OFF OFF OFF -13.56 − 60.3◦ -9 6 − 70◦ 06 0◦ -1.3 6 109.9◦ -12.2 6 − 1.3◦

50 -14.56 − 52.7◦ -19.76 − 15.2◦ OFF OFF OFF -8 6 − 150.2◦ -0.5 6 173.8◦ 06 0◦

the literature and can realize the following critical functions
for current and future wireless millimeter-wave beam-scanning
systems:
• formation of beams at arbitrary angles (already shown

above),
• control of beam shape, especially sidelobe level and

coma-lobe suppression,
• multibeam operation, especially for make-before-break

applications,
• broad-beam synthesis for e.g., beam search.

We now show that the PAFL provides the last three capabili-
ties. Beams are synthesized using basis beams in Fig. 11(a).

A. Improved beam shape

Improved beam shape can be achieved by taking advantage
of the PSO algorithm’s greater degrees of freedom, especially
as the target beam angle increases. In Fig. 12, two examples
are shown to demonstrate beams optimized specifically for
SLL and beamwidth (BW), with active feeds consisting of
the optimal six as chosen via a brute force selection method.
The brute force method uses the PSO optimization for all
possible combinations of six active feeds and selects the feeds
for which the resulting synthesized beam has the maximum
FoM. Due to the differences in the component FoM functionals
V (Hs), because each Li was set to be equal for each fi, some
component FoMs accrue significantly more or less error for
the same empirical difference in beam quality, and thus the

weights were empirically tuned to accentuate particular beam
features. The first example in Fig. 12(a) uses a relatively high
wSLL. The beam is targeted at θ = 50◦, and the realized PSO
beam SLL is at least 10.6dB better than beams synthesized
using the maximum gain solution. Fig. 12(b) shows a θ = 37◦

beam synthesized with a high wBW. The realized beam is
2.6◦ narrower at its 6 dB point and 4.2◦ narrower at its 10 dB
point than that synthesized using the calibrated maximum gain
solution.

B. Multibeam operation

As neither of our algorithms can directly synthesize multiple
beams, we rely here on superposition, reasoning that two
narrow beams with a sufficient angular separation should min-
imally interact. Two beams are initially synthesized separately
using 3 feeds at -23◦ (using patches 1-3) and 23◦ (using
patches 6-8), near the measured basis nulls at -20.3◦ and
21.6◦. Then the two sets of weights are normalized for equal
power in each beam and the beams are excited simultaneously.
Figure 13 shows the resulting multibeam pattern, and compares
this pattern with the original -23◦ and 23◦ beams. The result
shows good agreement between simulation and measurement,
and the main lobes of the originally synthesized beams are not
much changed by the simultaneous beam excitation. This is
due to the directional element patterns and the correspondingly
low number of active feeds necessary for a given beam. It is
important to note that while we chose to synthesize beams at
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(a)


(b)


Fig. 12. Beam shaping examples focusing on (a) SLL and (b) beamwidth
(BW). Dashed lines denote simulated results and solid lines denote measured
results. In (a), the target angle is 50◦ and the PSO beam exhibits -7.6 dB
better SLL than the maximum gain solution. In (b), the target angle is at 37◦
and the PSO beam has a 2.6◦ narrower 6-dB BW and a 4.2◦ narrower 10-dB
BW than the maximum gain solution, while only losing 0.2 dB in directivity.

(a)

(b)

Fig. 13. (a) Synthesized pattern has beams at both -23◦ and 23◦. The
relatively large angular separation for this multibeam pattern minimally affects
the beam shape. (b) A synthesized beam with a wide 3dB beam width of
17.6◦ where the closest two basis beams have 7.7◦ and 8.7◦ 3dB beam widths.

±23◦, the beams angles can be completely arbitrary at (θi, φi)
and (θj , φj) where θi 6= θj and φi 6= φj .

C. Broad Beam Synthesis

One strategy to reduce network latency in multi-antenna
systems is to employ an iterative search using progressively
narrower beams during channel characterization [56]. Again,
since our algorithms are designed for high-gain pencil beams,
we resort to a heuristic approach to beamforming. Fig. 13(b)
shows a synthesized 17.6◦ 3dB-beamwidth beam at 13.6◦,
using in-phase excitation of patches 5-8 in array Position
I. Two basis beams are plotted for comparison, with 3dB-
beamwidths of 7.7◦ and 8.7◦.

0.7𝝀𝝀
F

D

OEWG
feeds

GRIN
lens

<0.7𝝀𝝀

Feed
position

… …

Fig. 14. Schematic of full-wave simulation showing an OEWG array feeding
three lenses from the literature ( [30], [28], [20]). The OEWG feed width is
< 0.7λ so it can fit on a 0.7 or 0.8λ–spaced grid. Corresponding normalized
gain is shown in Fig. 15(a)–(d). Only two edge feeds are shown for clarity.
Simulation details are listed in Tab. II.

D. Beamforming with Various State-of-the-art Lenses

To demonstrate the general applicability of beamforming
techniques to PAFL systems, we investigated two additional
GRIN designs from the literature: [20] and a F/D = 0.5 ver-
sion of [28]. A 3D FDTD full-wave simulator (Empire XPU)
was used to simulate the basis beams using a practically re-
alizable open-ended waveguide (OEWG) feed array as shown
in Fig. 14. The F/D reduction was necessary for the latter
design because the original (large) F/D exhibited a severely
reduced FoV. The F/D = 0.5 version was generated with the
design equations [28], and broadside gain was confirmed to
be in agreement with the reported value.

It is worth noting that neither [20] nor [28] were explicitly
designed for beam-scanning performance, and therefore have
significant scan loss. Our in-house lens [30] was also simulated
using an OEWG array for easier comparison in performance
improvement with gain solvers. Table II describes the details
for these lens simulations. Due to F/D and feeding differences
between the simulated and published lenses, the results shown
here are purely for illustrating the potential improvement from
using the beamforming methods proposed in this work and are
not necessarily indicative of the full performance capabilities
of these lenses as originally designed.

Figure 15(a), (c), and (d) show substantial improvement
in scan loss is possible for all lenses using a 0.7λ–spaced
feed array, with up to 1.8 dB increase in broadside gain
(corresponding to a scan-loss exponent improvement from
ns → ns − 2). This represents a gain improvement of up
to 4 dB in the case of [20] at 40◦. Fig. 15(a) and (b) provide
a comparison of gain improvement using 0.7λ and 0.8λ feed
spacing for the lens reported in [30]. For 0.8λ–spaced feeds
[Fig. 15(b)] the PAFL scan-loss exponent ns = 5 is worse than
the 0.7λ–spaced feed scan-loss exponent, ns = 4 (consistent
with results from Section III).

As mentioned earlier, while the PAFL method is able to
improve the scan loss of arbitrary lenses, it is only capable
of improving upon the basis beams that are actually inherent
to the lens itself. If a given lens does not produce a high-
directivity beam at a given angle PAFL cannot produce signif-
icant radiation at that angle. The lens should first be designed
to have low scan loss over the FoV and then PAFL can further
improve performance.

This article has been accepted for publication in IEEE Transactions on Antennas and Propagation. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAP.2023.3240085

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on February 14,2023 at 18:29:53 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. X, 2021 12

TABLE II
DETAILS FOR THE LENS SIMULATIONS FROM LITERATURE, AS SHOWN IN FIG. 15

As simulated in this work As originally published

Lens F D F/D spacing Freq. # of feeds OEWG scan loss scan loss Freq. F D F/D Feed

(λ) (λ) (λ) (GHz) (w/ PAFL) (GHz) (λ) (λ)

[30] 4.3 9.0 0.5 0.7 26.5 14 WR-28 cos6(θ) cos4(θ) 26.5 4.3 9 0.5 Horn

[30] 4.3 9.0 0.5 0.8 26.5 12 WR-28 cos6(θ) cos5(θ) 26.5 4.3 9 0.5 Horn

[28] 2.5 5.0 0.5 0.7 12.4 8 WR-62 cos5(θ) cos4(θ) 40 20 16 1.25 OEWG

[20] 2.4 4.1 0.6 0.7 12.4 8 WR-62 cos4.5(θ) cos3(θ) 13.4 3 5 0.6 Patch

(c)

(d)

𝐜𝐜𝐜𝐜𝐜𝐜𝟒𝟒 𝜽𝜽

𝐜𝐜𝐜𝐜𝐜𝐜𝟓𝟓 𝜽𝜽

𝐜𝐜𝐜𝐜𝐜𝐜𝟑𝟑 𝜽𝜽

𝐜𝐜𝐜𝐜𝐜𝐜𝟒𝟒.𝟓𝟓 𝜽𝜽

𝐜𝐜𝐜𝐜𝐜𝐜𝟔𝟔 𝜽𝜽

𝐜𝐜𝐜𝐜𝐜𝐜𝟒𝟒 𝜽𝜽
solution

(b)
𝐜𝐜𝐜𝐜𝐜𝐜𝟔𝟔 𝜽𝜽

𝐜𝐜𝐜𝐜𝐜𝐜𝟓𝟓 𝜽𝜽

(a)

Fig. 15. Improvement in beamscan performance and scan loss exponent using
(3) for various lenses reported in the literature. (a) [30] at 0.7λ spacing, (b)
[30] at 0.8λ spacing, (c) [28] at 0.7λ spacing, and (d) [20] at 0.7λ spacing.
Lenses are excited by OEWGs as shown in Fig. 14.

To achieve even better scan loss the lens could be jointly
optimized with the PAFL method in the loop. That is, the
GRIN profile of the lens as well as feed array element pattern
and spacing could be optimized subject to the condition that
the lens is fed with optimal weights from (3) and using the
“loudest neighbor” heuristic (from Appendix A). These closed
form expressions are amenable to rapid optimization loops but
should be combined with a correspondingly rapid EM solver
such as those based on curved-ray geometrical optics [57] with
diffraction [58]. Joint design of the entire PAFL system is the
subject of future investigation.

VI. CONCLUSIONS AND FUTURE WORK

This work has shown that a widely-spaced (>0.5λ) phased
array behind a practical lens antenna can eliminate many
of the problems exhibited by switch-beam systems. For the
prototype used herein, gain-droop between bases is removed
and scan loss is substantially reduced (up to 4 dB), with only
a very small number (e.g., 5) of active feeds. PAFL concept

generality is demonstrated by simulating several systems em-
ploying state-of-the-art lenses in the literature, with similar
improvement in null-filling and beam-scan. A multi-objective
optimizer based upon PSO was presented to control beam-
shape, which uses the optimal gain solution for calibration,
benchmarking, and particle seeding. An PAFL system is thus
shown to use significantly fewer elements than an equivalent
phased-array (n << P ) and consuming a small fraction of the
power. However, it should be noted this also reduces EIRP
relative to an equivalently sized PAA. For example, if the
beamformer IC used in this work were driven at 1 dB com-
pression (OP1dB=11 dBm/channel), the complex weights used
for a broadside beam would produce an EIRP of 42.6 dBm. At
around 30 degrees the EIRP would drop to 37.7 dBm and at 50
degrees it would be 34 dBm. This low EIRP is due to the low
output power of silicon and the small number of active feeds
used in the PAFL method. Higher EIPR could be achieved by
using a high-power beamformer ICs (using e.g., GaN) and by
defocusing the feed array (a lower F/D) to increase n, the
number of active elements used to form a beam.

Lens design for explicit use in a PAFL system are beyond
the scope of this work. However, we observe that PAFL beam-
scan performance is improved if the lens itself exhibits low
scan loss. Thus, PAFL systems will benefit from research into
improved beam-scanning lens designs, especially for lenses
with a flat form factor. Moreover, explicitly low-complexity,
low-cost lens designs may be considered. As has been shown,
PSO beamforming can greatly improve the performance of
lenses with relatively poor beamscan performance, and if
PAFL algorithms were used with an explicitly simplified lens
geometry (e.g., a very coarsely-discretized version of [28]), the
result could a be a very low-cost, low scan-loss PAFL system.

Although this work only considered a uniform array pa-
rameterized on inter-element spacing, many more factors may
be considered in future feed-array design. For example, with
more space for each feed element, alternative (e.g., wideband)
antennas can be considered which may not fit in a 0.5λ grid.
Element-to-element coupling is also reduced, which could
solve issues related to scan blindness. Or, given the fewer
number of feed elements and the significant reduction in active
feed elements, full digital beamforming architectures may be-
come more compelling due to a reduced number of ADCs and
lower-complexity baseband processing. Another possibility is
to grade the feed spacing to reduce cost/complexity. As was
shown, null-filling is ultimately governed by gain crossover of
the basis beams and therefore wider basis beams allow for
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wider spacing of feed elements. Since, for planar aperture
antennas, beams broaden as scan angle increases it may be
possible to use wider-spaced feeds at the edge of the feed
array to further reduce the number of elements.

For each of the above tradeoffs, a joint optimization is
needed in which a lens is designed and evaluated for the
maximum possible gain over scan for that given lens re-
alization. The proposed numerically efficient methods for
computing maximum gain as well as the “loudest neighbor”
(see Appendix A) heuristic are critical to lens/feed-array joint
optimization. Taken together the methods in this work allow
for the rapid calculation of maximum gain versus scan angle
for a candidate PAFL system.

APPENDIX A
PROOF OF MAXIMUM GAIN BEAMFORMING

This algorithm provides a feed weight vector s such that the
maximum possible gain is achieved at a particular target angle
(θ0, φ0). While it is especially important to achieve maximum
gain between basis beams (in the nulls) the result is valid at all
angles including at basis beams. Gain, in terms of the far-field
electric field and the feed weights is,

G(θ, φ) =
4πU(θ, φ)

Pin
=

4πU(θ, φ)

‖s‖2
=

4πR2|E(θ, φ)|2

2η‖s‖2
,

(11)
where ‖ · ‖ denotes the L2 norm.

In (2) there are two rows for a given angle, one for each
orthogonal polarization, throughout the remainder of this work
we consider only the Eφ component and thus can operate upon
a single row. In order to solve for an arbitrary polarization an
appropriate change of coordinates can be made to collapse (2)
to a single row for each polarization. The row corresponding
to the desired angle and polarization is h0:

h0 =
[
Eφ,1(θ0, φ0) . . . Eφ,N (θ0, φ0)

]
, (12)

and

G(θ0, φ0) =
4πR2|h0s|2

2η‖s‖2
. (13)

Since 4πR2/2η is a constant, there exist two strategies for
maximizing G(θ0, φ0):

1) maximizing |h0s|2 while keeping ‖s‖2 constant, or
2) minimizing ‖s‖2 while keeping |h0s|2 constant,

and finding the feed weights for maximum gain at the target
angle is a constrained optimization problem. In the following
the second strategy is pursued. Using the Lagrange multiplier
method the field value at the steering angle is constrained to
an as-yet-undetermined constant (k = h0s = E(θ0, φ0)) and
‖s‖2 is minimized. The Lagrangian of the system is

L = ‖s‖2 + λ(h0s− k)

= s∗s+ λ(h0s− k),
(14)

which, when minimized yields,

∇L = s∗ + λh0

0 = s+ λh∗0

s = −λh∗0,
(15)

where λ denotes the Langrange multiplier (a free parameter)
and (·)∗ denotes the Hermitian transpose operator. From the
equality constraint:

k = −λh0h
∗
0, and

λ =
−k
h0h∗0

.
(16)

Substituting (16) into (15) yields:

s =
kh∗0
h0h∗0

. (17)

Since k has not yet been chosen, it can be used to cancel
the scalar factor of h0h

∗
0 in the denominator, yielding the

straightforward result:

s = h∗0, (18)

which is similar to the conjugate field matching approach used
in [37]–[40] except that instead of requiring the fields in the
focal plane (often a difficult quantity to measure), this result
only requires the complex far-fields at the desired angle (a
much more straightforward quantity to acquire). In words, in
order to form a beam with the highest gain at a particular
angle, not only should the antenna phases be set such that
all radiation adds coherently at the angle of interest, but each
feed should be excited in proportion to the magnitude of their
respective electric field at the steering angle.

The above result uses all available feed elements represented
in s but it is often sufficient (and preferred) to use a small
subset of feeds in order that the beamformer ICs for inactive
feeds can be disabled to reduce static power consumption (see
crossed-out beamformer ICs in Fig. 1(c)). It is now shown that
when synthesizing a beam with maximum gain using a subset
σ of feeds, with cardinality |σ| < N (corresponding to sub-
selected columns of H), the feeds which produce the highest
amplitude fields at the desired angle (referred to as the “loudest
neighbors”) should be used. Inserting (18) into (13) yields the
optimal gain in the target direction:

G0 =
4πR2|h0h

∗
0|2

2η‖h0‖2

=
4πR2‖h0‖4

2η‖h0‖2

=
4πR2‖h0‖2

2η
= α‖h0‖2.

(19)

Using (19) and the subset σ:

G0,σ = α‖h0,σ‖2 = α

|σ|∑
m=1

|h0,m|2, (20)
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where h0,σ denotes h0 truncated to only include the columns
corresponding to σ (1-by-|σ| vector). Since (20) is a sum of
positive numbers:

1) Removing any feed with |h0,n| 6= 0 from σ reduces
G0,σ

2) Keeping the feeds with highest |h0,n| maximizes the
partial sum of (20) and minimizes the reduction of G0,σ

as feeds are removed.
The second observation is referred to as “loudest neighbor”
selection. It is optimal for the maximum gain solution and a
useful heuristic when another synthesis algorithm is employed
such as Particle Swarm Optimization (PSO) with FoMs other
than maximum gain. Though the max gain algorithm cannot
itself provide satisfactory beams at large scan angles, it is
invaluable for benchmarking and is used to improve the
runtime of the implemented PSO discussed below.

APPENDIX B
DIRECTIVITY CALIBRATION

Here we cast the directivity maximization into a constrained
optimization problem as with the gain maximization (Sec-
tion A). Let us start with the definition of directivity:

D =
U(θ, φ)

Ũ
=

4πU(θ, φ)

Prad
. (21)

Prad is calculated by integrating the radiant intensity over the
far-field sphere:

Prad =

‹
Ω

UdΩ. (22)

Representing U in terms of the electric fields measured at a
spherical surface at some distance R,

U(θ, φ) ≈ R2

2η
(|Eθ(θ, φ)|2 + |Eφ(θ, φ)|2), (23)

and substituting back into the integral:

Prad =
R2

2η

[‹
Ω

|Eθ(θ, φ)|2dΩ +

‹
Ω

|Eφ(θ, φ)|2dΩ

]
.

(24)
The above integral can be approximated by a Riemann sum.
Assuming E(θ, φ) is represented as a vector e uniformly
sampled in solid angle yields:

Prad ≈
4π

M

M∑
m=1

Um =
2πR2

Mη

M∑
m=1

|em|2, (25)

where M is the total number of elements of e. Uniform
sampling in (θ, φ) (as opposed to solid angle) can be ac-
commodated by explicitly including the spherical differential
surface area element in the integral over power density, but
we make the above assumption for notational simplicity. By
employing (1), we get the following:

Prad ≈
2πR2

Mη
‖e‖2 =

2πR2

Mη
‖Hs‖2. (26)

We now simplify D at a target angle (θ0, φ0), making the same
polarization assumption as Section A and using (12):

D =
MUθ0,φ0

‖Hs‖2
=
M |eθ0,φ0

|2

‖Hs‖2
=
M |h0s|2

‖Hs‖2
. (27)

Since 4M is a constant, maximizing D consists of keeping
constant |h0s|2 and minimizing ‖Hs‖2. Specifically:

h0s = k. (28)

Using Lagrange multipliers, as in the gain solution, to solve
for the beam weights gives the highest possible directivity.

L = ‖Hs‖2 + λ(h0s− k)

∇L = ∇(s∗H∗Hs) +∇(λh0s− λk)

0 = H∗Hs+ λh∗0.

(29)

Rearranging to solve for s:

s = −λ(H∗H)−1h∗0. (30)

Next, k and λ which satisfy the relation are, from (28):

k = −λh0(H∗H)−1h∗0

λ =
−k

h0(H∗H)−1h∗0
.

(31)

Substituting (31) into (30) yields:

s =
k(H∗H)−1h∗0
h0(H∗H)−1h∗0

. (32)

Since the denominator is a scalar, k may be chosen to cancel
the denominator, yielding the simpler relation:

sopt,d = (H∗H)−1h∗0, (33)

which, in the general case in whichH is full rank is equivalent
to taking a column from the pseudoinverse of H . More or
less radiated power can be achieved by multiplying sopt,d by
a scalar. To see why k is an arbitrary parameter, consider the
scaling of k by some parameter α. From (28):

αh0sopt = αk

h0sopt,α = αk,where
sopt,α = αsopt.

(34)

Substituting into (27):

D =
M |h0s|2

‖Hs‖2
=

M |k|2

‖Hsopt‖2

Dα =
M |h0s|2

‖Hsopt,α‖2
=

M |α|2|k|2

|α|2‖Hsopt‖2
= D.

(35)

Thus, optimal directivity is invariant under the choice of k.
The same argument is employed for gain in Appendix A.
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